A Stochastic Hybrid Approximation for Chemical Kinetics Based on the Linear Noise Approximation
نویسندگان
چکیده
The Linear Noise Approximation (LNA) is a continuous approximation of the CME, which improves scalability and is accurate for those reactions satisfying the leap conditions. We formulate a novel stochastic hybrid approximation method for chemical reaction networks based on adaptive partitioning of the species and reactions according to leap conditions into two classes, one solved numerically via the CME and the other using the LNA. The leap criteria are more general than partitioning based on population thresholds, and the method can be combined with any numerical solution of the CME. We then use the hybrid model to derive a fast approximate model checking algorithm for Stochastic Evolution Logic (SEL). Experimental evaluation on several case studies demonstrates that the techniques are able to provide an accurate stochastic characterisation for a large class of systems, especially those presenting dynamical stiffness, resulting in significant improvement of computation time while still maintaining scalability.
منابع مشابه
A stochastic network design of bulky waste recycling – a hybrid harmony search approach based on sample approximation
Facing supply uncertainty of bulky wastes, the capacitated multi-product stochastic network design model for bulky waste recycling is proposed in this paper. The objective of this model is to minimize the first-stage total fixed costs and the expected value of the second-stage variable costs. The possibility of operation costs and transportation costs for bulky waste recycling is considered ...
متن کاملAPPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET
In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.
متن کاملApproximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کامل